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Variable Selection for Mixture Models Sample Clustering

Objective

Simultaneous variable selection and sample clustering

Cluster structure of samples confined to a small subset of
variables. Noisy variables mask the recovery of the clusters.

Proposed methodology:
- Use multivariate normal mixture model with an unknown number
of components to determine cluster structure of the samples.
- Use stochastic search techniques to examine the space of
variable subsets and identify most probable models.
- Also, infinite mixture models via Dirichlet process priors.

Genomic data: Identify disease subtypes and select the
discriminating genes.

Marina Vannucci (Rice University, USA) Bayesian Variable Selection (Part 2) PASI-CIMAT 04/28-30/2010 3 / 20



Variable Selection for Mixture Models Sample Clustering

Finite Mixture Models

Discriminating variables define a mixture of G distributions

f (x i |w , θ) =

G∑

k=1

wk f (x i |θk ).

We consider f (x i |θk ) multivariate normal with θk = (µk ,Σk ).

Cluster assignments: y = (y1, . . . , yn)′, where yi = k if the i th

observation comes from cluster k

p(yi = k) = wk .

Binder (1978); McLachlan and Basford (1988).
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Variable Selection for Mixture Models Sample Clustering

Variable Selection

Need to select discriminating variables.
Introduce latent p-vector γ with binary entries

{
γj = 1 if variable j defines a mixture distribution
γj = 0 otherwise.

The likelihood function is given by

L(G, γ, w , µ,Σ, η,Ω|X, y) =

G∏

k=1

(2π)
−pnk

2 |Σk |
−nk

2 wnk
k

× exp




−
1
2

∑

xi∈Ck

(x(γ)i − µ(γ)k )T Σ−1
(γ)k (x(γ)i − µ(γ)k )






×φ(X(γc)|η(γc),Ω(γc)),

where Ck = {xi |yi = k} with cardinality nk , φ(.) is multivariate
normal density.
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Variable Selection for Mixture Models Sample Clustering

Prior Model

Assume γj ’s are independent Bernoulli variables

Number of components, G, can be assumed to follow a truncated
Poisson or a discrete Uniform on [2, . . . , Gmax].

w |G ∼ Dirichlet(α, . . . , α).
{

µk(γ)|Σk(γ), G ∼ N (µ0(γ), hΣk(γ))

Σk(γ)|G ∼ IW(δ; Qγ)
,

where (γ) indicates the covariates with γj = 1.

We work with a marginalized likelihood.
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Variable Selection for Mixture Models Sample Clustering

Model Fitting

(1) Update γ by Metropolis algorithm (add/delete and swap moves).

(2) Update w from its full conditional (Dirichlet draw).

(3) Update y from its full conditional (multinomial draw).

(4) Split one cluster into two, or merge two into one.

(5) Birth or death of an empty component.

Steps (4) and (5) via reversible jump MCMC (Green, 1995).
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Variable Selection for Mixture Models Sample Clustering

Posterior Inference for y

Number of clusters, G, estimated by value most frequently visited
by MCMC sampler.

Estimate marginal posterior probabilities p(yi = k |X , G). Posterior
allocation of sample i estimated as

ŷi = max
1≤k≤G

{p(yi = k |X, G)} .
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Variable Selection for Mixture Models Sample Clustering

Posterior Inference for γ

Select variables with largest marginal posterior probability

p(γj = 1|X, G)

Select variables that are in the “best” models

γ̂∗ = argmax
1≤t≤M

{
p(γ(t)|X, G, ŵ , ŷ)

}
,

with ŷ the estimated sample allocations and ŵ = 1
M

∑M
t=1 w (t).

Tadesse, Sha and Vannucci (JASA, 2005)
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Variable Selection for Mixture Models Sample Clustering

Infinite Mixture Models via Dirichlet Process Priors

Integrating over w and taking G → ∞ we get

p(yi = k and yl = k for some l 6= i |y−i) =
n−i ,k

n − 1 + α

p(yi 6= yl for all l 6= i |y−i) =
α

n − 1 + α
. (1)

MCMC updates γ via Metropolis and yi from full conditionals

p(yi = k and yl = k for some l 6= i |y−i , X, γ)

p(yi 6= yl for all l 6= i |y−i , X, γ). (2)

Inference on y by MAP or by estimating p(yi = yj |X). Same as
before for γ

Natural approach to clustering (samples from a DP can have a
number of ties).

Kim, Tadesse and Vannucci (Biometrika, 2006)
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Variable Selection for Mixture Models Simulated Data

Application to Simulated Data

15 samples, 4 multivariate normal densities, 20 variables

xij ∼ I{1≤i≤4}N (µ1, σ
2
1) + I{5≤i≤7}N (µ2, σ

2
2)+

I{8≤i≤13}N (µ3, σ
2
3) + I{14≤i≤15}N (µ4, σ

2
4),

i = 1, . . . , 15, j = 1, . . . , 20, µk ∈ [−5, 5], σ2
k ∈ [.1, 2]

Cluster sizes: 4-3-6-2

Additional set of 980 noisy variables drawn from a standard
normal density
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Variable Selection for Mixture Models Simulated Data

Weakly informative priors for model parameters.
(δ = 3, α = 1, h = 100, Q = kI)

Truncated Poisson prior for G with Gmax = 10.

MCMC with 100,000 iterations - starting model with 1 randomly
selected γj set to 1.
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Variable Selection for Mixture Models Simulated Data

Trace plot of number of clusters, G
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Variable Selection for Mixture Models Simulated Data

Trace plot for number of included variables, pγ
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Variable Selection for Mixture Models Simulated Data

Marginal posterior probabilities, p(γj = 1|X, G = 4)
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Variable Selection for Mixture Models Simulated Data

Marginal posterior probabilities of sample allocations,
p(yi = k |X, G = 4), i = 1, . . . , 15, k = 1, . . . , 4
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Variable Selection for Mixture Models Simulated Data

Results

G = 4 had stronger support

All sample allocations corresponded to the true cluster structure

There were 16 variables with marginal probability > .7
(15 were correct)

Very little sensitivity to model parameters, with the exception of
the covariance hyperparameters
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Variable Selection for Mixture Models Application to Microarrays

Simultaneous Class Discovery and Gene Selection

Endometrial cancer: Most common gynecologic malignancy in the
US.

10 tumor and 4 normal tissues collected from hysterectomy
specimens, examined with Affymetrix Hu6800 arrays.

Probe sets with unreliable readings (< 20 and > 16, 000)
removed ⇒ p = 762.

Gene expressions were log-transformed and scaled by their
range.

Specified weakly informative priors for model parameters.

Used truncated Poisson prior for G with Gmax = n.

p(γj) ∼ Bernoulli(ϕ = 10/p).

Ran four MCMC chains with widely different starting points:
(a) 1; (b) 10; (c) 25; (d) 50 randomly selected γj ’s set to 1.
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Variable Selection for Mixture Models Application to Microarrays

Posterior distribution of G

Union of 4 chains – p(γj = 1|X, G = 3)
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Variable Selection for Mixture Models Application to Microarrays

We have identified 3 classes and a set of 31 genes that can
distinguish subtypes of the disease.
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